Note

The Funtoo Linux project has transitioned to "Hobby Mode" and this wiki is now read-only.

Difference between revisions of "Funtoo:Metro/Manual Setup"

From Funtoo
Jump to navigation Jump to search
(Created page with "This page documents how to set up your metro build repository manually. <!--T:42--> In the following example we are creating a pentium4 stage 3 compiled for x86-32bit binary...")
 
Line 123: Line 123:
<!--T:69-->
<!--T:69-->
At this point, you now have a new Core_2 32bit stage3, built using a "remote" pentium4 stage3. Once the first remote build completes successfully, metro will automatically change {{c|.control/strategy/build}} to be {{c|local}} instead of {{c|remote}}, so it will use the most recently-built Core_2 32bit stage3 as a seed for any new Core_2 32bit builds from now on.
At this point, you now have a new Core_2 32bit stage3, built using a "remote" pentium4 stage3. Once the first remote build completes successfully, metro will automatically change {{c|.control/strategy/build}} to be {{c|local}} instead of {{c|remote}}, so it will use the most recently-built Core_2 32bit stage3 as a seed for any new Core_2 32bit builds from now on.
[[Category:Official Documentation]]
[[Category:Metro]]

Revision as of 02:11, February 17, 2019

This page documents how to set up your metro build repository manually.

In the following example we are creating a pentium4 stage 3 compiled for x86-32bit binary compatibility. Pentium4 is a subarch of the x86-32bit architecture. Once you have metro installed you may find a full list of each subarch in your /var/git/meta-repo/kits/core-kit/profiles/funtoo-1.0/linux-gnu/arch/x86-32bit/subarch directory: Example:

root # ls /var/git/meta-repo/kits/core-kit/profiles/funtoo/1.0/linux-gnu/arch/x86-32bit/subarch/
amd64-k8+sse3_32  athlon-4      athlon-xp  core2_32    i486  k6-2       pentium      pentium2  pentiumpro
amd64-k8_32       athlon-mp     atom_32    generic_32  i686  k6-3       pentium-m    pentium3  prescott
athlon            athlon-tbird  btver1     geode       k6    native_32  pentium-mmx  pentium4  xen-pentium4+sse3

64-bit PC profiles can be found in the /var/git/meta-repo/kits/core-kit/profiles/funtoo/1.0/linux-gnu/arch/x86-64bit/subarch/ directory:

root # ls /var/git/meta-repo/kits/core-kit/profiles/funtoo/1.0/linux-gnu/arch/x86-64bit/subarch/
amd64-bulldozer  amd64-k8+sse3      btver1_64   generic_64         intel64-nehalem      native_64
amd64-jaguar     amd64-piledriver   core-avx-i  intel64-broadwell  intel64-sandybridge  nocona
amd64-k10        amd64-steamroller  core2_64    intel64-haswell    intel64-silvermont   opteron_64
amd64-k8         atom_64            corei7      intel64-ivybridge  intel64-westmere     xen-pentium4+sse3_64

First stages build (local build)

To get this all started, we need to bootstrap the process by downloading an initial seed stage3 to use for building and place it in its proper location in /home/mirror/funtoo, so that Metro can find it. We will also need to create some special "control" files in /home/mirror/funtoo, which will allow Metro to understand how it is supposed to proceed.

Step 1: Set up pentium4 repository (local build)

Assuming we're following the basic steps outlined in the previous section, and building funtoo-current build for the pentium4, using a generic pentium4 stage3 as a seed stage, then here the first set of steps we'd perform:

root # install -d /home/mirror/funtoo/funtoo-current/x86-32bit/pentium4
root # install -d /home/mirror/funtoo/funtoo-current/snapshots
root # cd /home/mirror/funtoo/funtoo-current/x86-32bit/pentium4
root # install -d 2017-10-01
root # cd 2017-10-01
root # wget -c https://build.funtoo.org/funtoo-current/x86-32bit/pentium4/2017-10-01/stage3-pentium4-funtoo-current-2017-10-01.tar.xz
root # cd ..
root # install -d .control/version
root # echo "2017-10-01" > .control/version/stage3
root # install -d .control/strategy
root # echo local >  .control/strategy/build
root # echo stage3 > .control/strategy/seed

OK, let's review the steps above. First, we create the directory /home/mirror/funtoo/funtoo-current/x86-32bit/pentium4, which is where Metro will expect to find funtoo-current pentium4 builds -- it is configured to look here by default. Then we create a specially-named directory to house our seed x86 stage3. Again, by default, Metro expects the directory to be named this way. We enter this directory, and download our seed x86 stage3 from funtoo.org. Note that the 2017-10-01 version stamp matches. Make sure that your directory name matches the stage3 name too. Everything has been set up to match Metro's default filesystem layout.

Next, we go back to the /home/mirror/metro/funtoo-current/x86-32bit/pentium4 directory, and inside it, we create a .control directory. This directory and its subdirectories contain special files that Metro references to determine certain aspects of its behavior. The .control/version/stage3 file is used by Metro to track the most recently-built stage3 for this particular build and subarch. Metro will automatically update this file with a new version stamp after it successfully builds a new stage3. But because Metro didn't actually build this stage3, we need to set up the .control/version/stage3 file manually. This will allow Metro to find our downloaded stage3 when we set up our pentium4 build to use it as a seed. Also note that Metro will create a similar .control/version/stage1 file after it successfully builds an pentium4 funtoo-current stage1.

We also set up .control/strategy/build and .control/strategy/seed files with values of local and stage3 respectively. These files define the building strategy Metro will use when we build pentium4 funtoo-current stages. With a build strategy of local, Metro will source its seed stage from funtoo-current pentium4, the current directory. And with a seed strategy of stage3, Metro will use a stage3 as a seed, and use this seed to build a new stage1, stage2 and stage3.

Step 2: Building the pentium4 stages

Incidentally, if all you wanted to do at this point was to build a new pentium4 funtoo-current stage1/2/3 (plus openvz and vserver templates). You would begin the process by typing:

root # cd /root/metro
root # scripts/ezbuild.sh funtoo-current x86-32bit pentium4

If you have a slow machine, it could take several hours to be completed because several "heavy" components like gcc or glibc have to be recompiled in each stage. Once a stage has been successfully completed, it is placed in the "${METRO_MIRROR}/funtoo-current/x32-bit/pentium4/YYYY-MM-DD" subdirectory, where YYYY-MM-DD is today's date at the time the ezbuild.sh script was started or the date you put on the ezscript.sh command line.

Building for another binary compatible architecture (remote build)

As written above, Metro is able to perform remote build building different architecture stage3 from a binary compatible seeding stage3 (e.g. using a pentium4 stage3 to seed a Intel Core2 32bits stage3).

In the Metro terminology this is called a remote build (a stage 3 of a different, but binary compatible, architecture is used as a seed). What's not compatible? You can't use a Sparc architecture to generate an x86 or ARM based stage and vice-versa. If you use a 32bit stage then you don't want to seed a 64bit build from it. Be sure that you are using a stage from the same architecture that you are trying to seed. Check Funtoo-current FTP Mirror for a stage that is from the same Architecture that you will be building.

   Note

Often, one build (ie. funtoo-current) can be used as a seed for another build such as funtoo-stable. However, hardened builds require hardened stages as seeds in order for the build to complete successfully.

Step 1: Set up Core_2 32bit repository

In this example, we're going to use this pentium4 funtoo-current stage3 to seed a new Core_2 32bit funtoo-current build. To get that done, we need to set up the pentium4 build directory as follows:

root #  cd /home/mirror/funtoo/funtoo-current/x86-32bit
root # install -d core2_32
root # cd core2_32
root # install -d .control/strategy
root # echo remote > .control/strategy/build
root # echo stage3 > .control/strategy/seed
root # install -d .control/remote
root # echo funtoo-current > .control/remote/build
root # echo x86-32bit > .control/remote/arch_desc
root # echo pentium4 > .control/remote/subarch

The steps we follow are similar to those we performed for a local build to set up our pentium4 directory for local build. However, note the differences. We didn't download a stage, because we are going to use the pentium4 stage to build a new Core_2 32bit stage. We also didn't create the .control/version/stage{1,3} files because Metro will create them for us after it successfully builds a new stage1 and stage3. We are still using a stage3 seed strategy, but we've set the build strategy to remote, which means that we're going to use a seed stage that's not from this particular subdirectory. Where are we going to get it from? The .control/remote directory contains this information, and lets Metro know that it should look for its seed stage3 in the /home/mirror/funtoo/funtoo-current/x86-32bit/pentium4 directory. Which one will it grab? You guessed it -- the most recently built stage3 (since our seed strategy was set to stage3) that has the version stamp of 2010-12-24, as recorded in /home/mirror/funtoo-current/x86-32bit/pentium4/.control/version/stage. Now you can see how all those control files come together to direct Metro to do the right thing.

   Note

arch_desc should be set to one of: x86-32bit, x86-64bit or pure64 for PC-compatible systems. You must use a 32-bit build as a seed for other 32-bit builds, and a 64-bit build as a seed for other 64-bit builds.

Step 2: Building the Core_2 32bit stages

Now, you could start building your new Core_2 32bit stage1/2/3 (plus openvz and vserver templates) by typing the following:

root # /root/metro/scripts/ezbuild.sh funtoo-current x86-32bit core2_32

In that case, the produced stages are placed in the /home/mirror/funtoo/funtoo-current/x32-bit/core2_32/YYYY-MM-DD subdirectory.

Step 3: The Next Build

At this point, you now have a new Core_2 32bit stage3, built using a "remote" pentium4 stage3. Once the first remote build completes successfully, metro will automatically change .control/strategy/build to be local instead of remote, so it will use the most recently-built Core_2 32bit stage3 as a seed for any new Core_2 32bit builds from now on.