注意:

The Funtoo Linux project has transitioned to "Hobby Mode" and this wiki is now read-only.

Difference between revisions of "Funtoo Linux Installation"

From Funtoo
Jump to navigation Jump to search
Line 41: Line 41:


{[:Install/Partitioning}}
{[:Install/Partitioning}}
{{:Install/Stage3}}
{{Install/Chroot}}


=== Downloading the Portage tree ===
=== Downloading the Portage tree ===

Revision as of 05:29, November 12, 2014

Introduction

This document was written to help you install Funtoo Linux as concisely as possible, with a minimum number of distracting options regarding system configuration.

These docs assume you have a "PC compatible" computer system with a standard PC BIOS. Many new computers support UEFI for booting, which is a new firmware interface that frequently replaces the older MBR-based BIOS. If you have a system with UEFI, you will want to use this documentation along with the UEFI Install Guide, which will augment these instructions and explain how to get your system to boot. You may need to change your PC BIOS settings to enable or disable UEFI booting. The UEFI Install Guide has more information on this, and steps on how to determine if your system supports UEFI.

We also offer a ZFS Install Guide, which augment the instructions on this page for those who want to install Funtoo Linux on ZFS. If you are installing Funtoo Linux on ARM architecture, please see Funtoo Linux Installation on ARM for notable differences regarding ARM support. An experimental Funtoo Linux build also exists for SPARC platforms. See Funtoo Linux Installation on SPARC.

New F2FS Install Guide is in progress which will augment the instructions on this page for those who want to install Funtoo Linux on F2FS.

If you've had previous experience installing Gentoo Linux then a lot of steps will be familiar, but you should still read through as there are a few differences.

Installation Overview

This is a basic overview of the Funtoo installation process:

  1. Download and boot the live CD of your choice.
  2. Prepare your disk.
  3. Create and mount filesystems.
  4. Install the Funtoo stage tarball of your choice.
  5. Chroot into your new system.
  6. Download the Portage tree.
  7. Configure your system and network.
  8. Install a kernel.
  9. Install a bootloader.
  10. Complete final steps.
  11. Reboot and enjoy.

Live CD

Funtoo doesn't provide an "official" Funtoo Live CD, but there are plenty of good ones out there to choose from. A great choice is the Gentoo-based System Rescue CD as it contains lots of tools and utilities and supports both 32-bit and 64-bit systems. For a generation 2 Hyper-V system, the Ubuntu desktop install DVD as of version 14.04.1 works well enough. Gentoo CDs don't support EFI boot, and the System Rescue CD lacks appropriate graphics support for Hyper-V as of version 4.4.0.

It is also possible to install Funtoo Linux using many other Linux-based live CDs. Generally, any modern bootable Linux live CD or live USB media will work. See requirements for an overview of what the Live Media must provide to allow a problem-free install of Funtoo Linux.

To begin a Funtoo Linux installation, download System Rescue CD from:

Or, use your preferred live media. Insert it into your disc drive, and boot from it. If using an older version of System Rescue CD, be sure to select the rescue64 kernel at the boot menu if you are installing a 64-bit system. By default, System Rescue CD used to boot in 32-bit mode though the latest version attempts to automatically detect 64-bit processors.

{[:Install/Partitioning}}

Install/Stage3

Template:Install/Chroot

Downloading the Portage tree

   Note

For an alternative way to do this, see Installing Portage From Snapshot.

Now it's time to install a copy of the Portage repository, which contains package scripts (ebuilds) that tell portage how to build and install thousands of different software packages. To create the Portage repository, simply run emerge --sync from within the chroot. This will automatically clone the portage tree from GitHub:

(chroot) # emerge --sync
   Important

If you receive the error with initial emerge --sync due to git protocol restrictions, change SYNC variable in /etc/make.conf:

SYNC="https://github.com/funtoo/ports-2012.git"

Install/Configuring

Introducing Portage

Portage, the Funtoo Linux package manager has a command called emerge which is used to build and install packages from source. It also takes care of installing all of the package's dependencies. You call emerge like this:

(chroot) # emerge packagename

When you install a package by specifying its name in the command-line, Portage records its name in the /var/lib/portage/world file. It does so because it assumes that, since you have installed it by name, you want to consider it part of your system and want to keep the package updated in the future. This is a handy feature, since when packages are being added to the world set, we can update our entire system by typing:

(chroot) # emerge --sync
(chroot) # emerge -auDN @world

This is the "official" way to update your Funtoo Linux system. Above, we first update our Portage tree using git to grab the latest ebuilds (scripts), and then run an emerge command to update the world set of packages. The options specified tell emerge to:

  • a - show us what will be emerged, and ask us if we want to proceed
  • u - update the packages we specify -- don't emerge them again if they are already emerged.
  • D - Consider the entire dependency tree of packages when looking for updates. In other words, do a deep update.
  • N - Update any packages that have changed (new) USE settings.

You should also consider passing --with-bdeps=y when emerging @world, at least once in a while. This will update build dependencies as well.

Of course, sometimes we want to install a package but not add it to the world file. This is often done because you only want the package installed temproarily or because you know the package in question is a dependnecy of another package. If this behavior is desired, you call emerge like this:

(chroot) # emerge -1 packagename

Advanced users may be interested in the Emerge wiki page.

Updating World

Now is actually a very good time to update the entire system and it can be a good idea to do so prior to first boot.

(chroot) # emerge --sync
(chroot) # emerge -auDN @world
   Important

Make sure you read any post emerge messages and follow their instructions. This is especially true if you have upgraded perl or python.

Configuring and installing the Linux kernel

Now it's time to build and install a Linux kernel, which is the heart of any Funtoo Linux system. The kernel is loaded by the boot loader, and interfaces directly with your system's hardware, and allows regular (userspace) programs to run.

A kernel must be configured properly for your system's hardware, so that it supports your hard drives, file systems, network cards, and so on. More experienced Linux users can choose to install kernel sources and configure and install their own kernel. If you don't know how to do this, we provide ebuilds that will automatically build a "univeral" kernel, modules and initramfs for booting your system that supports all hardware. This is an extremely simple way of building a kernel that will get your system booted.

What is our goal? To build a kernel that will recognize all the hardware in your system necessary for booting, so that you will be greeted by a friendly login prompt after installation is complete. These instructions will guide you through the process of installing a kernel the "easy" way -- without requiring user configuration, by using a "universal" kernel.

Package Sets

Before we install a kernel, we're going to cover a feature of Portage called package sets. Portage, the package manager/ports system for Funtoo Linux, will keep track of system packages as well as packages you have installed by calling emerge directly. These packages that are part of the base system are considered part of the "system" package set, while packages that you have installed by typing them on the command line (such as "gnome" in emerge gnome) will be added to the "world" package set. This provides an easy way to update your entire system.

However, sometimes it's nice to be able to update the kernel all by itself, or leave a kernel update out of your regular whole system update. To do this, we will create a new package set called "kernel".

Kernel Package Set

To create the kernel package set, perform the following steps:

(chroot) # mkdir /etc/portage/sets
(chroot) # echo sys-kernel/debian-sources > /etc/portage/sets/kernel

Now, we'll want to set a USE variable to tell debian-sources to build a "universal" kernel and initramfs for us, to take the guess-work out of getting Funtoo Linux booted. To do this, we're going to set the binary USE variable for debian-sources, as follows:

(chroot) # echo "sys-kernel/debian-sources binary" >> /etc/portage/package.use

If USE variables are new to you, you'll be getting a lot more familiar with them as you use Funtoo Linux. At their essence, they are "switches" that you can set to configure options that can be built in to various packages. They're used to customize your Funtoo Linux system to meet your exact needs. We added support for a binary USE flag to the debian-sources ebuilds, as well as a few other of our kernel ebuilds, to make it easier for new users to get Funtoo Linux up and running.

Now, when we just want to update our system's packages, we'll type emerge -auDN @world, and it will update our world set, leaving out the kernel. Likewise, when we just want to update our kernel, we'll type emerge -au @kernel, and it will update our kernel, leaving out the world set.

Building the Kernel

   Note

See Funtoo Linux Kernels for a full list of kernels supported in Funtoo Linux. We recommend debian-sources for new users.

   Important

debian-sources with binary USE flag requires at least 14GB free in /var/tmp and takes around 1 hour to build on a Intel Core i7 Processor.

Let's emerge our kernel:

(chroot) # emerge @kernel

Note that while use of the binary USE flag makes installing a working kernel extremely simple, it is one part of Funtoo Linux that takes a very long time to build from source, because it is building a kernel that supports all hardware that Linux supports! So, get the build started, and then let your machine compile. Slower machines can take up to several hours to build the kernel, and you'll want to make sure that you've set MAKEOPTS in /etc/make.conf to the number of processing cores/threads (plus one) in your system before starting to build it as quickly as possible -- see the /etc/make.conf section if you forgot to do this.

   Note

NVIDIA card users: the binary USE flag installs the Nouveau drivers which cannot be loaded at the same time as the proprietary drivers, and cannot be unloaded at runtime because of KMS. You need to blacklist it under /etc/modprobe.d/.

   Note

For an overview of other kernel options for Funtoo Linux, see Funtoo Linux Kernels. There may be modules that the Debian kernel doesn't include, a situation where genkernel would be useful. Also be sure to see hardware compatibility information.

Once emerge completes, you'll have a brand new kernel and initramfs installed to /boot, plus kernel headers installed in /usr/src/linux, and you'll be ready to configure the boot loader to load these to boot your Funtoo Linux system.

Installing a Bootloader

   Note

An alternate boot loader called extlinux can be used instead of GRUB if you desire. See the extlinux Guide for information on how to do this.

Installing Grub

The boot loader is responsible for loading the kernel from disk when your computer boots. For new installations, GRUB 2 and Funtoo's boot-update tool should be used as a boot loader. GRUB supports both GPT/GUID and legacy MBR partitioning schemes.

To use this recommended boot method, first emerge boot-update. This will also cause grub-2 to be merged, since it is a dependency of boot-update. (You may need to adjust GRUB_PLATFORMS if you are on a UEFI system. See UEFI Install Guide).

(chroot) # emerge boot-update

Then, edit /etc/boot.conf and specify "Funtoo Linux genkernel" as the default setting at the top of the file, replacing "Funtoo Linux".

/etc/boot.conf should now look like this:

boot {
        generate grub
        default "Funtoo Linux genkernel"
        timeout 3 
}

"Funtoo Linux" {
        kernel bzImage[-v]
        # params += nomodeset
}

"Funtoo Linux genkernel" {
# if you use bliss-kernel package
# you should change string
# kernel kernel[-v]
# to
# kernel kernel/[-v]/kernel[-v]
        kernel kernel[-v]
        initrd initramfs[-v]
        params += real_root=auto 
        # params += nomodeset
} 

If you use bliss-kernel, your /etc/boot.conf should look like:

boot {
        generate grub
        default "Funtoo Linux genkernel"
        timeout 3 
}

"Funtoo Linux" {
        kernel bzImage[-v]
        # params += nomodeset
}

"Funtoo Linux genkernel" {
        kernel kernels/[-v]/kernel[-v]
        initrd initramfs[-v]
        params += real_root=auto 
        # params += nomodeset
} 

Please read man boot.conf for further details.

Running grub-install and boot-update

Finally, we will need to actually install the GRUB boot loader to your disk, and also run boot-update which will generate your boot loader configuration file:

(chroot) # grub-install --no-floppy /dev/sda
(chroot) # boot-update

Now you need to update your boot loader configuration file:

(chroot) # boot-update

You only need to run grub-install when you first install Funtoo Linux, but you need to re-run boot-update every time you modify your /etc/boot.conf file, so your changes are applied on next boot.

<translate>

Network

It's important to ensure that you will be able to connect to your local-area network after you reboot into Funtoo Linux. There are three approaches you can use for configuring your network: NetworkManager, dhcpcd, and the Funtoo Linux Networking scripts. Here's how to choose which one to use based on the type of network you want to set up.

Wi-Fi

   Note

If using the gnome or other desktop install image, linux-firmware and NetworkManager are already installed and available. You can use nmtui to get Wi-Fi going if you need network connectivity prior to getting X and GNOME fully up and running. In addition, desktop stage3's have ZeroConf/Bonjour multicast DNS lookups enabled by default. Both these things will not be set up yet if you are using the basic stage3 image.

For laptop/mobile systems where you will be using Wi-Fi, roaming, and connecting to various networks, NetworkManager is strongly recommended. Since Wi-Fi cards require firmware to operate, it is also recommended that you emerge the linux-firmware ebuild if you have not done so already:

chroot # emerge linux-firmware networkmanager
chroot # rc-update add NetworkManager default

The above command will ensure that NetworkManager starts after you boot into Funtoo Linux. Once you've completed these installation steps and have booted into Funtoo Linux, you can use the nmtui command (which has an easy-to-use console-based interface) to configure NetworkManager so that it will connect (and automatically reconnect, after reboot) to a Wi-Fi access point:

chroot # nmtui

For more information about NetworkManager, see the NetworkManager package page.

Desktop (Wired DHCP)

For a home desktop or workstation with wired Ethernet that will use DHCP, the simplest and most effective option to enable network connectivity is to simply add dhcpcd to the default runlevel:

chroot # rc-update add dhcpcd default

When you reboot, dhcpcd will run in the background and manage all network interfaces and use DHCP to acquire network addresses from a DHCP server.

If your upstream DHCP server is dnsmasq, it can be configured to assign addresses via mac address to make servers on DHCP feasible.

Server (Static IP)

For servers, the Funtoo Linux Networking scripts are the supported option for network configuration, and they have their own documentation. They are optimized for static configurations and things like virtual Ethernet bridging for virtualization setups. See Funtoo Linux Networking for information on how to use Funtoo Linux's template-based network configuration system.

Hostname

By default Funtoo uses "localhost" as hostname. Although the system will work perfectly fine using this name, some ebuilds refuse to install when detecting localhost as hostname. It also may create confusion if several systems use the same hostname. Therefore, it is advised to change it to a more meaningful name. The hostname itself is arbitrary, meaning you can choose almost any combination of characters, as long as it makes sense to the system administrator. To change the hostname, edit

chroot # nano /etc/conf.d/hostname

Look for the line starting with hostname and change the entry between the quotes. Save the file, on the next boot Funtoo will use the new hostname.

   Warning

Hostnames can be up to 63 characters long and may use the following characters: a-z, 0-9 and hyphens (-). However, the hyphen may not be the first or last character.

</translate>


Finishing Steps

Set your root password

It's imperative that you set your root password before rebooting so that you can log in.

(chroot) # passwd

Restart your system

Now is the time to leave chroot, to unmount Funtoo Linux partitions and files and to restart your computer. When you restart, the GRUB boot loader will start, load the Linux kernel and initramfs, and your system will begin booting.

Leave the chroot, change directory to /mnt, unmount your Funtoo partitions, and reboot.

(chroot) # exit
root # cd /mnt
root # umount -l funtoo
root # reboot
   Note

System Rescue CD will gracefully unmount your new Funtoo filesystems as part of its normal shutdown sequence.

You should now see your system reboot, the GRUB boot loader appear for a few seconds, and then see the Linux kernel and initramfs loading. After this, you should see Funtoo Linux itself start to boot, and you should be greeted with a login: prompt. Funtoo Linux has been successfully installed!

Profiles

Once you have rebooted into Funtoo Linux, you can further customize your system to your needs by using Funtoo Profiles.

Funtoo profiles are used to define defaults for Portage specific to your needs. There are 4 basic profile types: arch, build, flavor, and mix-ins:

arch
typically x86-32bit or x86-64bit, this defines the processor type and support of your system. This is defined when your stage was built and should not be changed.
build
defines whether your system is a current, stable or experimental build. current systems will have newer packages unmasked than stable systems.
flavor
defines the general type of system, such as server or desktop, and will set default USE flags appropriate for your needs.
mix-ins
define various optional settings that you may be interested in enabling.

One arch, build and flavor must be set for each Funtoo Linux system, while mix-ins are optional and you can enable more than one if desired.

Remember that profiles can often be inherited. For example, the desktop flavor inherits the workstation flavor settings, which in turn inherits the X and audio mix-ins. You can view this by using eselect:

(chroot) # eselect profile show
Currently set profiles:
    arch: gentoo:funtoo/1.0/linux-gnu/arch/x86-64bit
   build: gentoo:funtoo/1.0/linux-gnu/build/current
  flavor: gentoo:funtoo/1.0/linux-gnu/flavor/desktop
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/kde

Automatically enabled profiles:
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/print
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/X
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/audio
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/dvd
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/media
 mix-ins: gentoo:funtoo/1.0/linux-gnu/mix-ins/console-extras

To view installed profiles:

(chroot) # eselect profile list

To change the profile flavor:

(chroot) # eselect profile set-flavor 7

To add a mix-in:

(chroot) # eselect profile add 10

Next Steps

If you are brand new to Funtoo Linux and Gentoo Linux, please check out Funtoo Linux First Steps, which will help get you acquainted with your new system. We also have a category for our official documentation, which includes all docs that we officially maintain for installation and operation of Funtoo Linux.

We also have a number of pages dedicated to setting up your system, which you can find below. If you are interested in adding a page to this list, add it to the "First Steps" MediaWiki category.

{{#ask: | format=ul }}

If your system did not boot correctly, see Installation Troubleshooting for steps you can take to resolve the problem.