The Funtoo Linux project has transitioned to "Hobby Mode" and this wiki is now read-only.
ZFS
ZFS es un sistema de archivos avanzado que se encuentra disponible en Funtoo Linux gracias al proyecto "ZFS on Linux".
Es fácil configurar y utilizar ZFS. En esta breve introducción configuraremos ZFS en Funtoo Linux, utilizando un núcleo debian-sources
ó debian-sources-lts
similar al que viene integrado con Funtoo Linux y también usaremos nuestro grupo de almacenamiento ZFS para almacenar datos que no forman parte de la instalación de Funtoo Linux.
Esto significa que no tendremos que preocuparnos de habilitar el soporte para ZFS dentro de GRUB o montar ZFS para poder iniciar Funtoo Linux.
Funtoo Linux iniciará desde un sistema de archivos No-ZFS y como parte del proceso de instalación, iniciará nuestro grupo de almacenamiento ZFS y lo montará en la ruta que nosotros deseemos.
Instalación
Para instalar ZFS, realice los siguientes pasos:
root # emerge zfs
Esto instalará las herramientas de usuario de ZFS (zfs
) además de los módulos del núcleo para ZFS (zfs-kmod
y spl
). Una vez terminado, habilite ZFS en su nivel de ejecución de la siguiente manera:
root # rc-update add zfs-import default root # rc
ZFS is now initialized and ready for use.
ZFS Concepts
Unlike traditional filesystems like ext4 and xfs, ZFS is an all-inclusive storage technology that manages its own filesystems without using /etc/fstab
. The ZFS concept of importing volumes and their associated filesystems makes them available for use by the operating system. This will be performed when the system boots via the zfs-import
startup script.
ZFS also generally manages the physical disks that it uses, and physical disks are added to a ZFS storage pool. Then, ZFS can create volumes from the storage pool on which files can be stored.
Unlike traditional Linux filesystems, ZFS filesystems will allocate storage on-demand from the underlying storage pool. Thus, we can set the "size" of a ZFS volume, but this space only actually allocated when files are stored on the filesystem. In contrast, traditional Linux filesystems like ext4 and xfs must be assigned underlying block storage in advance.
In ZFS terminology, a ZFS storage pool can hold the following things, all of which are considered to be datasets:
- filesystems - these are what get mounted and you store files in. Generally, this is the main thing people use ZFS for.
- clones - a filesystem that is created as a copy of an existing snapshot.
- snapshots - a read-only copy of a filesystem at a given point in time.
- volume - a dataset that acts as a block device, such as a swap device.
When you inspect the contents of a ZFS storage pool, you will see potentially all these different types of things listed as the contents of the pool, and their names will appear in a pool/path[@snapshot]
format. Pool is the name of the storage pool. Path is a slash-delimited path name for the component, and the slashes don't represent directories but a logical organizational hierarchy for the dataset in the pool.
Creating a Storage Pool
To create a basic ZFS storage pool, you will need an extra empty disk. Perform the following steps:
root # zpool create mypool /dev/sdxy
/dev/sdxy
should be an unused disk. You may need to use the following command if this disk contains any pre-existing data on it:
root # zpool create -f mypool /dev/sdxy
Once your storage pool is created, you can verify its existence with the zpool status
command:
root # zpool status pool: mypool state: ONLINE scan: none requested config: NAME STATE READ WRITE CKSUM mypool ONLINE 0 0 0 sdb ONLINE 0 0 0 errors: No known data errors root #
And if you type zfs list
, you will likely see something like this:
root # # zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 2.19G 459G 96K none
Notice the mountpoint entry of None
. While it is possible to mount your storage pool directly and use it as a filesystem, it is best to create a filesystem as a sub-path within your pool's namespace, as follows:
root # zfs create mypool/home root # zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 2.19G 459G 96K none mypool/home 96K 459G 96K none
As you can see above, although we have created a ZFS filesystem, it is only using 96K of storage on our pool, although there are 459GB available. You can also see that the filesystem is currently not mounted. Rather than use the mount
command, let's change that the ZFS way:
root # mkdir /data/home root # zfs set mountpoint=/data/home mypool/home root # mount ... mypool/home on /data/home type zfs (rw,xattr,posixacl)
We have now set the mountpoint
property on our filesystem, and can see that it is now mounted where we want it. ZFS will remember that our mypool/home
filesystem gets mounted at /data/home
. Most people will want their filesystems to be automatically mounted at boot and will perform the following steps to make this happen:
root # rc-update add zfs-mount default
You should now be at the point where you can begin to use ZFS for a variety of tasks. While there is a lot more to ZFS than what is covered in this short introduction, you should now have a good understanding of the fundamental concepts on which ZFS is based.